

Empowering Academic Excellence Through Advanced Robotics

v. 1.01 April 2025

Function Structure

Application Scenarios

Research Labs

Perfect for robotics research exploring motion dynamics, AI integration, and

environmental sensing.

Provides hands-on learning in programming, robotics engineering, and AI applications.

Robotics Competitions

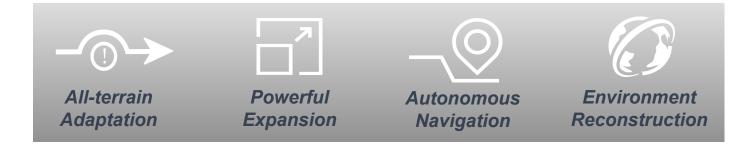
Ideal platform for student competitions in robot design, programming, and problem-solving.

Supports technology demonstrations and cross-disciplinary innovation

projects.

SID1 – Lite3 Series

Venture


Entry-level model perfect for basic robotics education and motion training applications.

Pro

Advanced model with enhanced computing capabilities for deeper AI and machine learning projects.

LIDAR - LIDAR 2

Specialized version with integrated LiDAR for environmental mapping and autonomous navigation research.

Technical Parameters

Models	Venture	Pro	LIDAR			
Package	_	ROS + 1 year License BOW				
Standing Size	610 × 370 × 445 mm	610 × 370 × 445 mm	610 × 370 × 503 mm			
Load Capacity	7 kg	7 kg	7 kg			
Weight	12.2 kg	12.2 kg	12.2 kg			
Max Slope	40°	40°	40°			
Stair Height	15cm	15cm	15cm			

Development Support

Comprehensive user manuals

- Product usage guides
- Software interface documentation
- Motion & perception development guides

Secondary Development

Complete SDK package

- Motion SDK & API
- Perception software interfaces
- Recognition, tracking & navigation source code
- Built-in ROS system • for efficient development

Simulation Capabilities

Advanced simulation support

- **URDF** simulation models
- Motion development demos
- Kinematic & dynamic simulations
- Compatible with major simulation platforms

Control Platform

Android Control App Features

- Real-time video streaming with minimal latency
- Intuitive motion control interface
- One-click access to:
 - Voice control 0
 - Obstacle detection 0
 - Advanced functions 0

Human-Machine Interaction

- Jumping and flipping
- Dancing capabilities
- Self-recovery after falls
- Crawling functionality

Feedback Systems

2

- Built-in speaker system
- LED light strip
 integration
- Synchronized music and lighting effects

Customization

Hands-on component
 assembly

3

- Programming experience
- Customization
 opportunities

Industry Integration

• Adaptable for various industries

4

- Supports laboratory work
- Enables curriculum development

BOW: Making Robotics Accessible

Multiple Programming Languages

Program robots using C#, Python, or C++

ſ	_				1
ь	-	-	-	-	ł
~	-			-	

Cross-Platform Development

Build applications on Windows or Linux systems

Simulation to Reality

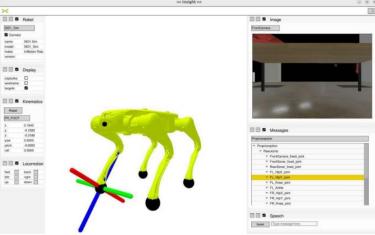
Seamless transition between virtual and physical robots

Universal Codebase

One SDK works across all InMotion robot models

BOW: Real-time Robot Control & Visualization

Key Features


- Real-time control and visualization
- User-friendly SDK with comprehensive tools
- Hardware-agnostic development

Technical Capabilities

- Universal SDK command conversion
- Local network and Internet control
- Minimal latency operation

Developer Support

- Dedicated expert assistance
- Cross-platform compatibility
- Automatic BOW-enabled robot compatibility

Expandable Modules

LiDAR Module

16-line:

- Detection Range: 100 m @10% 150 m @70%
- 3D-SLAM algorithm development for map creation, navigation, and obstacle avoidance.
- Multi-sensor fusion algorithms involving depth cameras, inertial navigation systems, and LiDAR, enabling more precise navigation, positioning, path planning, and obstacle avoidance.

Depth Camera

Monocular color images, stereo grayscale images, depth point clouds, and internal IMU data output. Can be used for:

- Visual SLAM and terrain mapping development.
- Color image resolution: 1920x1080 @30FPS.
- Grayscale image resolution: 1280x720 @30FPS.
- Depth point cloud resolution: 1280x720 @30FPS.
- 2.5D terrain mapping and visual algorithm development.

Al Server

21 TOPS:

- GPU: Equipped with 384-core NVIDIA Volta[™]
- GPU with 48 Tensor Cores.
- CPU: 6-core NVIDIA Carmel ARM®v8.2 64-bit
- CPU with 6MB L2 + 4MB L3 cache.
- Memory: 16GB, 128-bit LPDDR4x with a bandwidth of 59.7GB/s.
- Storage: 16GB eMMC 5.1.

New Offer

All New SID1/Lite3 Pro LiDAR 2 with Mid 360 LiDAR Camera

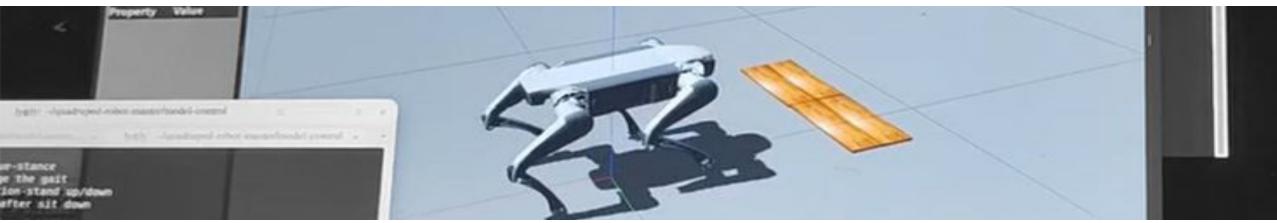
- Advanced Control System: State-of-the-art motion control and balance algorithms
- Modular Design: Easily expandable with additional sensors and components
- **Research-Grade Hardware:** Professional-quality actuators and sensors
- Educational Integration: Comprehensive curriculum support materials

Key Specifications

- Laser: 905 nm wavelength, Class 1 eye-safe (IEC 60825-1:2014)
- Detection Range: 40m @ 10% reflectivity, 70m @ 80% reflectivity
- Field of View: 360° horizontal, -7° to 52° vertical
- Precision: ≤2cm @ 10m, Angular error ≤0.15°

Performance

- Point Rate: 200,000 points/s
- Frame Rate: 10 Hz typical
- Data: 100 BASE-TX Ethernet with GPS sync


Environmental

- Operating Temp: -20° to 55°C
- Protection: IP67-rated

Special Educational Bundle Price: 11.990€

System Architecture

Sensor Systems

Ultrasonic radar, LiDAR, and cameras provide comprehensive environmental data.

1

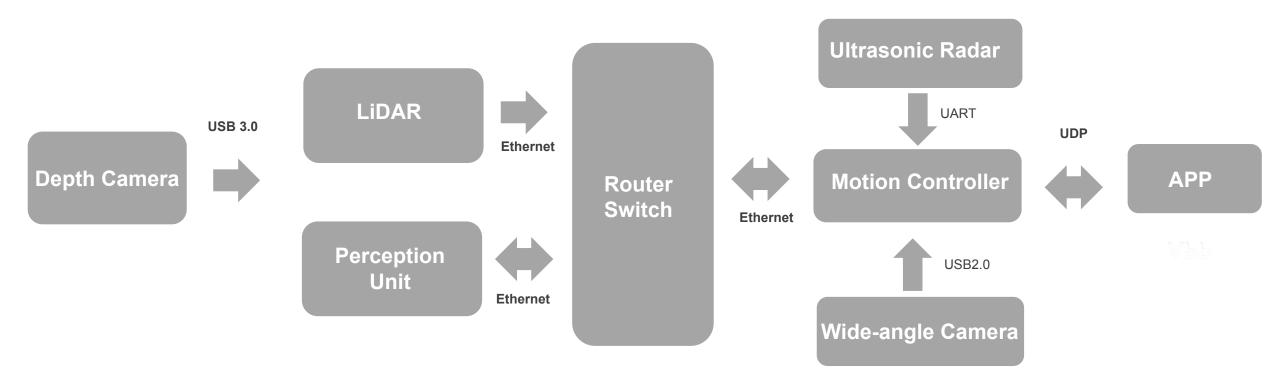
Processing Units

Dedicated perception units and motion controllers handle specialized tasks.

3

Communication Network

Ethernet, USB, and UART protocols ensure reliable data transmission.


2

Control Interface

Intuitive app provides real-time control and monitoring capabilities.

Function Structure

Transform Your Robotic Education

Models

Different configurations to meet diverse educational needs.

TOPS

Powerful AI computing capabilities for advanced research.

Sensors

Comprehensive perception system for environmental awareness.

Support

Complete documentation and development resources.

The Future of Learning is Robotic

SID1 Basic SID1 Pro SID1 Venture Al

Enhance research efforts

Leverage knowledge and skills

Commit to continuous learning

Education Bundle

Starting: 6,490 €

+ VAT

Academic Discounts

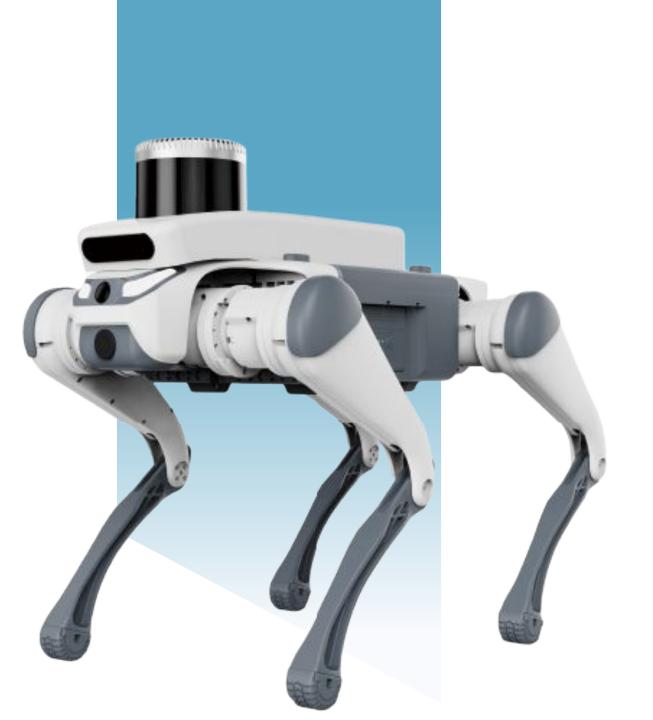
Special pricing for educational institutions and bulk orders

Schedule a Demo

Visit

www.inmotionrobotic.com/education

Get in Touch


info@inmotionrobotic.com

Thank you for You Attention

email: info@inmotionrobotic.com

